A u deque a vectoru je potřeba vědět jak probíhá realokace v případě překročení kapacity. Jestli se používá klasický exponenciální růst, tak to znamená, že takový kontejner má nejvýše dvojnásobnou kapacitu (pokud se z něho nemazalo) protože se při překročení zvýší kapacita na dvojnásobek. To má výhodu, že každý prvek se v průměru bude přesouvat z důvodu realokace jen dvakrát, tedy amortizovaná složitost push() je O(1). Jen se musí počítat s tím, že jednou za "n" kroků může být ta složitost "n".